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1. Introduction

Sensing our body’s shape is crucial for many, if not all, of our
daily activities. When our proprioceptive feedback systems mal-
function, the consequences can be dire, ranging from decreased
joint stability[1] to bodily damage including possible osteoarthri-
tis.[2] In robotics, proprioception is equally as fundamental, play-
ing an essential role in executing safe, controlled motions.

Numerous approaches to proprioception in robots have been
proposed. Rigid-link robots can estimate their shape accurately
by measuring the angles between the links, and applying forward

kinematics[3] and accompanying
dynamics.[4–7] However, an emerging class
of robots comprises continuously deform-
able segments, rendering the rigid-body
assumption invalid. Many approaches to
soft robot state estimation pair a model
with several strain sensors, exploiting the
fact that much of the surface area and inte-
rior volume of soft robots stretch during
use. For example, researchers have pro-
posed numerous schemes for sensor-based
closed-loop control of continuum robots,[8]

including for medical applications.[9]

Another particularly well-studied class of
soft robots is soft grippers, where many
methods were used to sense shape,[10–12]

including a few demonstrations of closed-
loop control of soft grippers.[13,14] The
strain sensors used include resistive
sensors made of liquid metal (eutectic
gallium-indium, or EGaIn)[10,11] or conduc-
tive polymer composites,[12] and multilayer
capacitive sensors using conductive
polymer composites.[15–17] Despite these
promising advances, strain sensor-based

methods have some inherent limitations. For example, Case
et al. showed how several common silicones can change mechan-
ical properties over time and even when deformed at different
rates, making modeling challenging.[18] Additionally, it is unclear
how to generalize these advances in strain-based shape estima-
tion to reconfigurable soft robots[16,19–21] or robots whose resting
shape changes during their lifetime.[22,23] In both reconfigurable
and shape-changing robots, the resting shape dramatically
changes, violating the basic assumptions utilized in strain-based
techniques, such as the constant-curvature or piecewise-constant-
curvature models in widespread use with manipulators.[8]

In a step toward decoupling shape estimation from the
modeling and design of the robot, researchers have proposed
numerous sensorized surfaces. Several authors have proposed
using flexible fabric or plastic sheets to connect several rigid,
sensorized elements, and then estimating the relative orienta-
tion between sections with known geometries (using, e.g., an
inertial measurement unit, or IMU), to determine the spatial
locations of discrete points within a sheet.[24–27] In a related but
different approach, Huard and Sprynski et al. proposed a con-
tinuously deformable, sensorized sheet to measure 3D space
curves.[28,29] Other approaches to surface estimation use
machine learning and statistics to process sensor data and
extract a continuous estimate of the shape of the target
surface.[30–32] For instance, Rendl et al. used 16 piezoelectric
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Soft robot deformations are typically estimated using strain sensors to infer
change from a nominal shape while taking a robot-specific mechanical model into
account. This approach performs poorly during buckling and when material
properties change with time, and is untenable for shape-changing robots that
don’t have a well-defined resting (unactuated) shape. Herein, these limitations
are overcome using stretchable shape sensing (S3) sheets that fuse orientation
measurements to estimate 3D surface contours without making assumptions
about the underlying robot geometry or material properties. The S3 sheets can
estimate the shape of target objects to an accuracy of �3mm for an 80 mm long
sheet. The authors show the S3 sheets estimating their shape while being
deformed in 3D space and also attached to the surface of a silicone three-
chamber pneumatic bladder, highlighting the potential for shape-sensing sheets
to be applied, removed, and reapplied to soft robots for shape estimation. Finally,
the S3 sheets detecting their own stretch up to 30% strain is demonstrated. The
approach introduced herein provides a generalized method for measuring the
shape of objects without making strong assumptions about the objects, thus
achieving a modular, mechanics model-free approach to proprioception for
wearable electronics and soft robotics.
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bend sensors on a polyethylene terephthalate (PET) sheet to
approximate the shape of the sheet as a combination of
several shape primitives.[30] Meerbeek et al. embedded an array
of optical fibers in an elastomeric foam, and used machine learn-
ing algorithms to identify the mode of deformation and estimate
the angle of deformation of the foam.[32] One drawback of the
data-driven approaches[30–32] is that it is unclear how the algo-
rithms would generalize to shapes not seen during training.
Furthermore, these prior sensorized surfaces (both the data-
driven and rigid-link approaches) could not stretch, making them
incompatible with many soft robots.

In this study, we introduce stretchable shape-sensing (S3)
sheets (Figure 1). The sheets comprise acrylic adhesive, biphasic
gallium indium alloy (bGaIn) circuits,[33] and commercial inte-
grated circuits (ICs) that provide orientation and strain measure-
ments. We demonstrate S3 sheets reconstructing their shape in
free space and on several static shapes with known geometry,
achieving an estimation accuracy of �3mm on an 80mm sheet.
We also show the sheets applied to the surface of a three-chamber
pneumatic bladder, highlighting their ability to estimate dynamic
shape change of arbitrarily shaped soft robots, without knowledge
of the robot’s geometry or material properties. Finally, we charac-
terize the stretch sensor response while straining the sheets to
30%. Overall, the S3 sheets can be applied to an arbitrary host body
to estimate its shape and changes in shape, then removed and
applied to a different host to do the same, cumulatively achieving
a modular and mechanics model-free approach to proprioception.

2. Results

2.1. Circuit Overview

We made S3 sheets using sensorized stretchable circuit board
assemblies and used an offboard PC to postprocess the sensor

data for shape estimation (Figure 1). To manufacture the sheets,
we painted conductive traces of bGaIn[33] on both sides of a
stretchable double-sided acrylic tape (0.5 mm-thick VHB 4910,
3M Inc.), and then placed commercial surface-mount electrical
components on the circuits, including absolute orientation sen-
sors (BNO055, Bosch), capacitive sensing ICs (MPR121, Arrow
Semiconductor), resistors, and capacitors. To measure the
stretch along the S3 sheets, we painted bGaIn traces on the
top in a rectangular strain-gauge rosette centered around each
MPR121 (Figure 2a), and painted ground traces on the bottom
layer directly underneath these electrodes, to form capacitive
stretch sensors.[15,17,34] To reduce the effects of cross-talk
(intracircuit electromagnetic interference), we included bypass
capacitors on the supply lines and aligned the ground planes
of the interintegrated circuit (I2C) communication lines with
their positive rails. External noise did not cause issues in our
experiments, but in noisier environments, it may be necessary
to protect signal integrity by including ground pours on the
top and/or bottom of the circuit. Further manufacturing details
are presented in the Experimental Section.

The orientation and stretch sensing modalities fulfill comple-
mentary roles. The absolute orientation sensors provide a rela-
tively low-noise estimate of the surface normal at discrete
points, while also providing orthogonal vectors in the tangent
plane. Further, absolute orientations reduce the propagation of
error from sensors earlier in the serial chain, when compared
to relative orientations reported by an IMU. The BNO sensors’
three vectors specify a unique coordinate system at each location,
helping to remove orientational uncertainties that can arise from
approaches relying solely on stretch sensors or relative orienta-
tion sensors, but they do not provide any explicit information
about the distance between points on the surface. Meanwhile,
the stretch sensor rosettes give information about the sheets’
2D strain state, a feature that will be useful in future sheets that

Figure 1. Stretchable shape-sensing (S3) sheets can stretch and bend to measure the shape of complex surfaces. The S3 sheets (middle) can estimate
their shape while they are deformed in 3D space (left) or applied to objects (right), without requiring additional modeling or sensor fusion algorithms to
deal with each different application or use case. Each sheet has a nominal unstretched length of 80 mm.
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are firmly embedded in biaxially stretchable surfaces, such as
shape-changing robots.[35]

2.2. Shape-Estimation Algorithms

During use, the S3 sheet will be deformed into a shape, the
sensors give data, and we must find algorithms to minimize
the error between the estimated shape and the true
shape. Different interpolation methods and shape-estimation
algorithms may perform better under specific sets of motions.
For clarity and generality, we will focus on two fusion algorithms:
a rigid-link assumption and approximating the sheets as a
smooth curve using spherical interpolation of tangent vectors
with discrete integration.

First, we must become more precise in our notion of
shape and error. Numerous methods exist to quantify differences
in shape, after minimizing rotation, scaling, and translation
errors,[35,36] including the elastic deformation energy required
to stretch and bend one shape into another without cutting
or puncturing it;[37] heuristics such as the “shape index”
(S ¼ Perimeter

2
ffiffiffiffiffiffiffiffiffiffi
π�areap );[38] and the sum of squared differences between

important landmark points along the two surfaces in
Procrustes analysis.[39,40] Here, we are interested in quantifying
the shape of a discretely sensorized stretchable sheet at an instant
in time, and we can easily apply Procrustes analysis for evaluat-
ing our sheets and comparing performance to other
(nonstretchable) shape-sensing sheets.

Starting with a base coordinate system O0, defined at the cor-
ner of the leftmost orientation sensor (with gravity pointing in
the negative z direction), we can define a series of coordinate sys-
tems of interest Oi (i ¼ 1, 2, : : : , 6) that are located at the corner

of each of our orientation sensors, with the z axis oriented nor-
mal to their surface (Figure 2a). The 3D position of these origins
will be denoted as Pi, defined in the base coordinate system O0

unless specified otherwise. This coordinate system notation is
analogous to the traditional Denavit–Hartenberg notation[3] used
in traditional robotics. However, in traditional robots, the local
“joint frames” correspond to the robot’s degrees of freedom.
In the case of an S3 sheet, there are infinite degrees of freedom,
and potentially infinite interesting local frames to use. To mini-
mize confusion while retaining all available information, we have
included precisely one joint frame per orientation sensor. The
straight-line distances between them will be defined as diþ1

i ,
while the distance between neighboring coordinate systems,
along the surface of the skin, will be defined as liþ1

i .
To estimate the shape of a series of rigid links connected by

spherical joints (i.e., they can rotate about arbitrary axes), one simply
needs to determine the coordinate transforms between the bases of
each link. We will apply this simplified model to our S3 sheet, in
what we will call the rigid-link assumption. Specifically, we define
the y-axis of Oi (denoted as yi) to point toward Piþ1, and we define
the distance between Pi and Piþ1 to be diþ1

i . Thus

Piþ1 ¼ Pi þ diþ1
i � yi (1)

Note that the orientation sensors used (Bosch BNO055) are
global orientation sensors, allowing each sensor to be truly inde-
pendent and preventing error propagation as the sensor count
increases. This is in contrast to a typical orientation sensor, such
as an inertial measurement unit (IMU), which would only give
relative rotations. We can collect the coordinate frame axes for
each sensor into a single rotation matrix Ri, and express the
transformation Ti, in O0 coordinates, as

Figure 2. Using S3 sheets to estimate the surface profiles of several objects. a) Coordinate systems and geometry for the S3 sheets. The positions Pi of the
origin of each coordinate system Oi are our primary values of interest. Additionally, we have used black boxes to indicate three strain sensors within a
single module. Note thatO0 andO1 are coincident, but differ by a rotation R1

0. Red lines show x axes, green lines show y axes, and blue circles indicate that
the z axes point out of the page (toward the camera in this view). b–d) Representative results for shape estimation of known geometries. Black dots show
ground truth, gold dots show the rigid-link approximation, and blue dots show the slerp estimation. (b) A rectangular prism with dimensions
44.6� 26mm. (c) A sinusoid with equation y ¼ 10�sinðx=10Þ. (d) A cylinder with diameter 42.6 mm. Scale bars, 1 cm.
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Piþ1 ¼ Pi þ diþ1
i �Ri�½0, 1, 0, 1�0 ¼ Pi þ Tiþ1

i �½0, 0, 0, 1�0 (2)

where we have expanded the homogeneous coordinates for an
origin point, to make it explicit that we are expressing the loca-
tion of an origin. We can then express each coordinate as

Pi ¼ ½0, 0, 0, 1� i� þPi�1
j¼0 T

jþ1
j ½0, 0, 0, 1�0 , where the first term

½0, 0, 0, 1� i� is introduced to ensure that the point is still
expressed in homogeneous form. This first term is the main
modification required relative to the traditional Denavit–
Hartenberg parameters,[3] wherein the use of relative orientation
sensors allows progressive homogeneous transforms to be mul-
tiplied together to make a new homogeneous transform.

If there is negligible stretch in the system, as in the case of a
freely moving sheet, then the distances liþ1

i are all constant.
Additionally, for relatively small curvatures, diþ1

i � liþ1
i , allowing

the skin to operate entirely using the orientation sensors. For
increased accuracy, by premultiplying the initial (flat,
unstretched) lengths li0 ¼ di0 with their stretch factor γi (obtained
from the stretch sensors), we can get an estimate of the current
length liþ1

i ¼ γi�li0 � diþ1
i . However, to fully estimate the curved

shape of the skin between the successive orientation sensors, we
need to introduce other nonlinear connecting arcs.

To demonstrate how smoothly-varying curves can be used for
interpolation instead of a rigid-link model, we use an approach
inspired by the work of Saguin–Sprynski et al.[27] Specifically,
with tangent vectors given by the sensors as yi and yiþ1, we first
interpolate with spherical interpolation (shorthanded as “slerp”)
to get a smooth estimate ts of the tangent curves connecting the
points, with known arc-lengths

tsðyi, yiþ1, sÞ ¼
sinðð1� sÞθÞyi þ sinðsθÞyiþ1

sinðθÞ (3)

where θ is the angle between yi and yiþ1, and the arc-length
parameter s ∈ ½0, 1� allows us to get an arc-length parameteriza-
tion of the tangent vectors along the unit sphere. This guarantees
the tangent vectors will be unit length, while including the con-
straint that the tangents match the tangents of the orientation
sensors. Note that, in the limit when θ ¼ 0, this yields the clas-
sical linear interpolation. Finally, we can numerically integrate
the tangent estimates with constant step size li=n with n subdi-
visions of s (such that the total arc length is identically liþ1

i ) to get
smooth estimates of the curves connecting our orientation sen-
sors, as desired

Piþ1 ¼ Pi þ
Xn

j¼0

liþ1
i =n � tsðyi, yiþ1, j=nÞ (4)

2.3. Surface Contour Estimation of 3D Objects

By applying the S3 sheets to the surface of objects, we can esti-
mate the objects’ surface profiles. The sheets can stretch and
bend to fill the contours of the surface, allowing their orientation
sensors to get accurate readings of the surface normals. Here, we
explore this possibility by applying the sheets to objects with
known ground-truth shapes to estimate their surface contour.

By studying these base shapes, we can begin to quantify the
strengths and limitations of the current hardware, pointing to
future opportunities and challenges.

Applying the sheets to a variety of geometrically distinct
objects allows us to estimate their surface contours (Figure 2).
Here, we conformed a sheet to the surface of a rectangular prism
(Figure 2b), sinusoid (Figure 2c), and a cylinder (Figure 2d).
These shapes represent a complexly curved surface, a discrete
polygon, and a constant-curvature surface, respectively,
highlighting the generality of the approach. For each shape,
we recorded 5 s of data at 30 Hz for five independent S3 sheet
applications. After each application, the skin was laid flat on a
table, then reapplied to the shape for an independent measure-
ment. The total error, including intrinsic sensor noise and errors
due to reapplication of the sheet (representing the envisioned use
case of reconfigurable S3 sheets), yielded a root-mean-square
error (RMSE) of 3.5, 3.6, and 2.0 mm for the rectangular prism,
sinusoid, and cylinder, respectively, using the rigid-link model.
Using the slerp smooth interpolation, we achieved an RMSE of
3.04, 2.7, and 1.5mm, respectively, suggesting that smooth inter-
polation is a better estimator than the rigid-link approximation.
Finally, we note that the “null algorithm” of assuming the sheet
was flat would yield much higher RMSEs of 7.11, 12.3, and
15.3mm, respectively.

Note that the accuracy of these curves, in particular discrete
shapes like the rectangular prism, is dependent on where the six
origins are placed: the skin has no knowledge of where discon-
tinuities may lie on the surface. Hence, the change in orienta-
tion between two origins could be due to an infinite number of
curves between the two origins. However, most objects are con-
cave and do not have large, irregularly shaped protrusions, so
the error is often small. The Nyquist–Shannon sampling
theorem tells us that the S3 sheets can only accurately measure
variations in shapes that have a wavelength (or characteristic
length) that is more than double the spacing between
orientation sensors. Increasing the sensor density–and there-
fore, the number of origins of interest–can allow for the estima-
tion of more complex surface profiles. However, current
semiconductor packaging technologies limit the sensing ICs
(accelerometers, capacitive sensing chips, etc.) to a minimum
size of approximately 3 by 3 mm, introducing a tradeoff
between sensor density and the deformability of the circuit.
Additionally, the offset between the target shape and the orien-
tation sensors represents a fixed offset error and a slight
smoothing function, making it desirable to manufacture the
sheets to be as thin as possible. Here, we used 0.5 mm VHB
(sold as 0.02 inches thick), making substantial further improve-
ments in this regard unlikely.

2.4. Estimation of 3D Space Curves

To test the limits of the S3 sheets under simultaneous bending
and torsion, we deformed the sheets using rigid bars, and
estimated the sheets’ shape using both the rigid-link method
(for ease of visualization) and the more-accurate spline method
(Figure 3). While the shape-estimation appears accurate, the
dense sensor spacing and occlusions during motion made it dif-
ficult to obtain ground truth for the sheets’ shape. A complete
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video of the dynamic estimation of the sequence of motions
shown in Figure 3 can be found as Movie S1, Supporting
Information.

Moving sequentially through the subfigures, we have
attempted curves with increasing variations in curvature.
Initially, we can see that the orientation of the first sensor, O1

is tilted downward slightly due to the grips lifting the sheet
off of the flat surface (Figure 3a). However, the remaining
sensors are all aligned well, highlighting the global nature of
the orientation sensors. The curve was then lifted into a smooth
curve with a visually accurate sensor reconstruction (Figure 3b).
With the introduction of a rigid stick, two inflection points
were added to the curve, making it more difficult for the sheets
to estimate their shape with the rigid-link assumption and
increasing the value of utilizing spline-based methods such as
slerp (Figure 3c,d). Next, we see how the orientation sensors
naturally detect torsion (Figure 3d), in contrast to stretch or
bend sensors, which can estimate at most a single degree of
freedom and require additional sensors to distinguish between
curvature and torsion. Finally, as the curvature increases
into a highly-curved “Ω” shape, the rigid-link assumption
results in physically unrealistic cusp nodes, while slerp approx-
imates the curve but misses some of the nuances due to the
characteristic length of the bend being of the same order of mag-
nitude as the sensor spacing (Nyquist–Shannon sampling
theorem).

Since S3 sheets can estimate arbitrary 3D space curves, they
can also be applied to the surface of soft robots to measure their
motion. To illustrate this concept, we applied an S3 sheet to the
surface of a three-chamber pneumatic bladder (Figure 4 and
Movie S2, Supporting Information). The estimated shape starts
flat with the bladders (including the O1 sloped-down error as
noted previously), then as the bladders are inflated, the skin
detects the motion and adjusts its estimation to be curved with
the bladders’ overall shape. Since the sheets could not detect their
overall height, we have set the lowest estimated point at z= 0.
Using this baseline, the sheets successfully estimated the shape
and orientation of the surface, highlighting the generality of the
previous 3D space curves estimation.

2.5. Stretchability

The S3 sheets can also detect their stretch, using the capacitive
sensors emanating from the MPR121 ICs. Each MPR121 is con-
nected to three sensors arranged in a rectangular rosette
configuration, which, in theory, can detect the full 2D strain
state. However, we had difficulty getting all MPR121s
working simultaneously, thus we include this feature as a
proof-of-concept, and have not utilized the stretch functionality
for our shape-estimation experiments. To highlight the
stretchability of the circuits, we stretched an S3 sheet along

Figure 3. Shape estimation of 3D space curves. Left, photos of the skin deformed in various shapes. Right, estimated shape using the rigid-link
approximation as well as the slerp interpolation, alongside the coordinate frame of each orientation sensor. a) Flat. b) Curved upward. c) Lifted in
the middle, making a concave downward shape. d) Bent around a wooden stick into a step-like curve. e) Bent and twisted simultaneously.
f ) Lifted in the middle and tucked in a highly contorted “Ω” shape. Scale bar in (f ) is 1 cm, and applies to all images.
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the y direction to 30% strain (ε ¼ 0.3) cyclically, and plotted the
sensor data from a complete module (Figure 5, with photos of a
stretched circuit presented in Supporting Information).

Due to their small size (6 mm long, 0.75mm wide), the sen-
sors have a relatively low capacitance, on the order of 10 pF
(Figure 5). While each sensor has a different starting capacitance
(likely due to variations in the trace width), the change in capaci-
tance correlates linearly with stretch in the ideal case.[17,41]

In practice, viscoelastic effects and the sensors’ nonzero width
coupled with the Poisson effect lead to imperfect sensor behav-
ior, complicating estimation of the 2D strain state with the
stretch sensor rosettes. Despite these challenges, after the initial
slack region of �0�8% strain, the response of each sensor
attached to a given MPR121 is distinct: the sensors aligned with
the stretch direction (sy and ty) exhibited the largest response
(�0.12 μF), while the sensors at 45° exhibited a smaller response,

Figure 4. Using S3 sheets to estimate surface profiles of a multichamber pneumatic bladder. The plots below each photo show the estimated shape of the
surface of the bladder. Since the sheets have no concept of elevation, we have defined the lowest point of the skin to be z= 0. From top-left to bottom-
right: flat, middle bladder inflated, middle and right bladders inflated, all bladders inflated, left and middle bladders inflated, and left bladder inflated. The
scale bar in t= 0 denotes 1 cm, and applies to all images.

Figure 5. Stretchability of the shape-sensing sheets. Here, we stretched the sheets along the y direction to 30% eight times. a) Raw sensor data from two
MPR121 IC’s, with three stretch sensors each (oriented aligned with the x axis, angled at 45°, and aligned with the y axis). b,c) Change in capacitance
versus stretch, for two sets of strain sensors si and ti. Dashed lines denote the mean, while clouds indicate 1 standard deviation from the mean.
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and the sensors aligned with the x axis exhibited a slightly
negative response. This negative response could be due to the
shortening of the sensors (contraction due to Poisson’s ratio, low-
ering capacitance) overpowering the effect of the sensor getting
wider (elongation in the y direction, increasing capacitance).

In this study, we found that small interfaces were the most
challenging, with the quad flat no-lead (QFN) packages used here
(pin width 0.2 mm and pin spacing 0.4 mm) beginning to fail at
roughly ε ¼ 30%. To investigate whether corrosion was a likely
cause (since EGaIn is corrosive on many metals), we conducted
scanning electron microscope/energy dispersive X-ray spectros-
copy (SEM–EDS) analysis on MPR121 chips in three conditions:
a pristine (unused) state; after being used in an S3 sheet circuit;
after being used in an S3 sheet and cleaned (see the , Supporting
Information). We observed no noticeable change in composition
of the electrodes after being cleaned, suggesting that the EGaIn
was not corroding or otherwise alloying with the electrode
surfaces, which were primarily nickel and palladium.

3. Conclusion

In this manuscript, we introduced flexible and stretchable sheets
that can estimate their shape. This represents an advance toward
the estimation of surface profiles of soft robots, which could be
used to execute high-DoF closed-loop shape change. The remov-
able sheets do not make assumptions about the underlying sub-
strate, making it straightforward to apply, remove, and reapply the
S3 sheets to the surface of soft robots with differingmorphologies.

Limitations of the present S3 sheets could be overcome
through synergistic advances in stretchable circuits, material
interfacing, and shape reconstruction algorithms. At strains over
30%, the ICs begin to lose connection and discontinue function-
ing. Potential routes to improve the IC interfacing include the
use of copper strain islands,[42] and the use of HCl vapor to
improve bonding with the liquid metal traces.[43] The use of
an automated pick-and-place machine could reduce component
alignment errors, and the use of purely elastic materials (without
viscoelastic effects) could prolong the S3 sheets’ lifespan by
reducing unwanted wrinkling. Increasing the sensor density
could yield higher-resolution estimates of shape. To apply the
S3 sheets to larger surfaces, a multitude of sheets could be con-
nected in a gridlike arrangement, and sensor fusion algorithms,
such as those proposed by Stanko et al.,[44] could be used to com-
bine the information from each S3 sheet and estimate the shape
of large stretchable surfaces. We are currently working toward
utilizing such a grid to measure the shape of shape-changing
robots[35] as they morph during locomotion, stretching in multi-
ple directions. Finally, future advances in stretchable computing
could allow the S3 sheets to execute shape-estimation onboard in
real time.

Collectively, this work points to a new approach to shape-
sensing for soft robotics and wearables. Roboticists could fuse
orientation and strain information to get estimates of curves
and surfaces on their robots without requiring extensive system
modeling and mechanical characterization. This allows two
major design challenges to be decoupled—robot design can
be done more independently of the sensing design, then
general-purpose S3 sheets can be attached to the robots’ surfaces.

4. Experimental Section

Manufacturing: To manufacture the sheets, we made traces on double-
sided acrylic tape (VHB 4910) using biphasic gallium-indium (bGaIn),[33]

encapsulated using rubber cement (Elmer’s Products, Inc.) and mechani-
cally placed commercial ICs (Figure 6). Specifically, we first attached wax-
coated paper (the backing of XFasten carpet tape) to VHB, and laser-cut
the outline and vias with a CO2 laser (ULS 3.0, Universal Laser Systems)
(Step 1). Then, we used an ultraviolet laser (LPKF U4) to cut circuit out-
lines into the sticker paper on the top and bottom (Step 2). Next, we pre-
pared an EGaIn suspension by adding EGaIn (1.8 g) to ethanol (11mL),
followed by sonication using a probe sonicator (Qsonica, Q700) coupled
with a 1/4 inch diameter microtip (part number 4420) at 30% amplitude
for 2 h. To induce oxide formation and create bGaIn, the suspension was
poured into a crucible and baked in an oven (Lindberg Blue M, Thermo
Fisher Scientific) at 900° for 30 min. We then painted bGaIn on the bottom
of the VHB, removed the bottom sticker paper, and encapsulated the
traces with rubber cement (Steps 3–4). After flipping the circuits over,
we painted bGaIn on the other (“top”) side (Step 5). This completed
the substrate preparation.

To transform the traces into functional circuits, we then placed com-
ponents with a 3-axis manual pick-and-place machine (custommade using
an Edmund Optics camera-positioning system, Step 6). Next, wires were
added using silicone adhesive (SilPoxy, Smooth-On, Inc.), and the border
was encapsulated with rubber cement (Steps 7–8). Leaving the ICs
exposed during this step made it easier to debug and repair circuits when
they stopped working. Finally, we added SilPoxy on the border of each IC to
reduce shear strain at their interfaces with bGaIn (Step 9).

Figure 6. Manufacturing an S3 sheet. First, the traces were manufactured
using VHB, sticker paper masks, and rubber cement to encapsulate the
bGaIn traces. Then, we added electrical components (ICs, resistors,
capacitors) and wires, encapsulated the border, added SilPoxy islands
around each IC, and attached motion-capture markers onto the orienta-
tion sensors to serve as ground truth.
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